A Bayesian Model for Unsupervised Semantic Parsing
نویسندگان
چکیده
We propose a non-parametric Bayesian model for unsupervised semantic parsing. Following Poon and Domingos (2009), we consider a semantic parsing setting where the goal is to (1) decompose the syntactic dependency tree of a sentence into fragments, (2) assign each of these fragments to a cluster of semantically equivalent syntactic structures, and (3) predict predicate-argument relations between the fragments. We use hierarchical PitmanYor processes to model statistical dependencies between meaning representations of predicates and those of their arguments, as well as the clusters of their syntactic realizations. We develop a modification of the MetropolisHastings split-merge sampler, resulting in an efficient inference algorithm for the model. The method is experimentally evaluated by using the induced semantic representation for the question answering task in the biomedical domain.
منابع مشابه
Unsupervised Induction of Frame-Semantic Representations
The frame-semantic parsing task is challenging for supervised techniques, even for those few languages where relatively large amounts of labeled data are available. In this preliminary work, we consider unsupervised induction of frame-semantic representations. An existing state-of-the-art Bayesian model for PropBank-style unsupervised semantic role induction (Titov and Klementiev, 2012) is exte...
متن کاملEfficient Inference for Unsupervised Semantic Parsing
Unsupervised semantic parsing algorithms based on Bayesian nonparametric grammars offer a promising way to bootstrap semantic analyses for unsupervised relation/information extraction (RE/IE). Yet the form in which they currently exist makes it difficult to apply them to larger data sets. In this paper, we make progress toward scaling unsupervised semantic parsing by introducing a local, collap...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملExploiting the Semantic Web for Unsupervised Natural Language Semantic Parsing
In this paper, we propose to bring together the semantic web experience and statistical natural language semantic parsing modeling. The idea is that, the process for populating knowledgebases by semantically parsing structured web pages may provide very valuable implicit annotation for language understanding tasks. We mine search queries hitting to these web pages in order to semantically annot...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کامل